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ABSTRACT

The stability of motion of a satellite consisting of a main
rigid body and three pairs of flexible booms, coinciding with the
principal axes of the body in undeformed state, is under consider-
ation. The problem formulation is a hybrid one, in the sense that
some of the generalized coordinates depend on time alone and the
other depend on spatial position and time. The problem is trans-
formed into a discrete one by means of modal analysis. The motion
stability is investigated by the Liapunov second method. A computer
program has been written and the numerical results are displayed
in the form of stability diagrams using the system properties as

parameters.
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- Introduction

‘The rotational motion of a torque-free rigid body is known
to be stable if the rotation takes place about an axis corresponding.
to the maximum or minimum moment of inertia, but the motion is un-
stable if the rotation takes place about the axis of intermediate mo-
ment of inertia (see, for example, Reference 1, Section 6.7). If
the body is not entirely rigid but possessing deformable parts, the
rotational motion can be expected to exhibit different stability
characteristics. ‘

In one of the first attempts to treat rigorously distributed
elastic members, the stability of motion of a spinning symmetric
body which is part rigid and part elastic has been investigated by
Meirovitch and Nelson (Reference 2). The mathematical formulation
in Reference 2 consists of a set of ordinary'differential equations
for the rotational motion and another set of partial differential
equations describing the elastic displacements. We shall refer to
a system of both ordinary and partial differential equations as
"hybrid." The hybrid system of Reference 2 has been reduced to a
system consisting entirely of ordinary differential equations by
means of modal analysis. The stability of the resulting discrete
system has been investigated by an infinitesimal analysis and the
effect of the flexible parts on the motion stability has been dis-
~played in the form of diagrams relating various parameters of the
system. | »

A general and rigorous method for the stability analysis of
systems containing distributed elastic parts has been developed by
Meirovitch (Reférénce 3). The method represents an extension of the
Liapunov second method and works directly with the hybrid system
of differential equations (in the sense defined above). As an
application, the case of gravity-gradient stabilization of a satel-
lite with flexible appendages is solved. The method has been further
extended to hybrid systems possessing ignorable coordinates (Reference
4). The general theory is applied to the stability analysis of a
spinning satellite resembling that of Reference 2.



The problem under investigation is related to that of Refe-
rence 4. However, whereas the mathematical model used as an ill-
ustration in Reference 4 consists of a main rigid body with a pair
of booms aligned with the spin axis, the model considered here con-
sists of a main rigid body and three pairs of booms, as shown in
Figure 2. It turns out that the elastic deformations are not in-
-dependent of one another, so that it is not possible to work directly
with the hybrid system of equations. -The formulation is reduced to
a set of ordinary differential equations by modal analysis and the
stability of such a set can be investigated by the Liapunov second
method. Due to its generality, the problem formulation of Reference
4 is equally applicable here. The present investigation departs from
that of Reference 4 in the stability analysis.

" This report contains the formulation of the problem, as well as
‘numerical results obtained by means of a computer program designed to
perform the stability analysis. The program has been used to investigate
the effect of changes in the parameters of the system on its stability.

General Problem Formulation

Let us consider a body of total mass m moving relative to an
inertial space XYZ, as shown in Figure 1. The entire body or parts
of the body are capable of small elastic deformations from a refer-
ence equilibrium position coinciding with the undeformed state of
the body. Next we define two sets of body axes, the set xyz with
the origin at point 0 and coinciding with the principal axes of the
body in the undeformed state, and the set Eng which is parallel to
xyz but has the origin at the center of mass ¢ of the deformed body.
We note that &nz is not a principal set of axes. The set xyz serves
as a suitable reference frame for measuring elastic deformations
whereas the set &nrz is more convenient for expressing the overall
motion. The position of a typical point in the undeformed body

relative to axes xyz is denoted by the vector* r = xi + yj + zk

* Vector gquantities are denoted by wavy lines under the symbols.



and the elastic displacement of an element of mass dm, originally
coincident with that point, by the vector u = u(x,y.z,t)i + v{x,y,z,t)]
+ w(x,y,z,t)k, where i,j,h_are unit vectors along axes x,y,z (or

axes £,n,t), respectively. The radius vector from point 0 to ¢ is

given by Io = % S (r+u)dm = % S u dm, where we note that g r dm
m m m

is zero by virtue of the fact that 0 is the center of mass of the
undeformed body. All integrations involved in this report are carried
over the domain occupied by the body in undeformed state, which is
designated as the reference state.

From Figure 1 we conclude that the position of the mass element
dm relative to the inertial space is Ry = R, *+r+ uy, where u, 6 =
8-x,=ui+v,j+ wk represents the displacement vector measured
with respect to axes gng and Bc is the position of the origin of these
axes relative to the inertial space. Assuming that axes xyz, hence

also axes &ng, rotate with angular velocity w = w, i + w_J

g n=

ative to the inertial space, and denoting by éé = ﬁci.+ vcj + &c& the

A

+ w k -
w.k rel

velocity of dm relative to gng due to the elastic effect, it is shown
in Reference 3 that the kinetic energy has the expression

—l > ° > "'}— 5 L] 5 }—
T“'z'Sde Bgdm = 3 m B = By + 5 wdgew
ot _]; b A
+ (st (£ +u))-8, am +. 2 | @ a! dn (1)
m m
where gd is the inertia dyadic of the deformed body about axes &nt.

The elements of the dyadic are

_ 2 2 .

Jgg = gm [}y+vc) +(z+w ) ]dm , JEn = Jna = Sm(x+uc)(y+vc)dm

Jnn = gm [(x+uc) +(z+wc) ]dm , JEC ch Sm(x+uc)(z+wc)dm (2)
_ 2 2 _ -

I, = Snl Bx+uc) +(y+v,) ]dm I Sm(y+vc)(z+wc)dm



The kinetic energy can be written conveniently in terms of
matrix notation. If {ﬁc}.is the column matrix corresponding to Bc,
{©} the column matrix corresponding to @, and [J] the symmetric

matrix, whose elements are the elements of the dyadic J then Eq. (1)

. dl
can be rewritten in the form
1 (= 1T¢ = 1 T T 1 .2, .2 .2
T = im{Rc} {Rc§+ 7{w5 [THw}+{R} {u]+ 5 gm(uc+vc+wc)dm (3)
where { K} is the column matrix with the elements
Kg = gm [(y+vc)wc - (z+wc)vc] dm
Kn = gm [}z+wc)uc - (x+uc)wc] dm (4)

KC Sm [}x+uc)vc - (y+vc)uC] dm

The angular velocity components Wer® r0 do not represent time

rates of change of certain angles but nonintggrable combinations of
time derivatives of angular displacements. They are sometimes
referred to as time derivatives of quasi-coordinates. Denoting by
ei and éi (i=1,2,3) the true angular displacements and their time
rates of change, the angular velocity vector can be written in the
matrix form {w} = [6]{é}, where {6} is the column matrix with ele-
ments éi(i=l,2,3) and [e6] is a 3x3 matrix(\whose elements depend on
the order of the three rotations ei used to produce the orientation
of axes Enr relative to an inertial space. In view of this, the
kinetic energy can be written in terms of true angular velocities
as follows '

T = %—m{ﬁchiﬁch %{é}T[I]{éi + {n1T(6 Y + %— Sm (ﬁiﬁ'ziﬂ'vi)dm (5)
in which the notation |

[1] = [e17[910e] + {z3 = [o1%{x} (6)
has been adopted.

The potential energy arises primarily from two sources, namely

gravity and body elasticity. The gravitational potential energy



is assumed to be very small compared with the kinetic energy, or
the elastic potential energy, and will be ignored. The elastic

potential energy, denoted by V and referred to at times as strain

EL
energy, depends on the nature of the elastic members and is in

general a function of the partial derivatives of the elastic dis-
placements u,v,w with respect to the spatial variables x,y,z. Since

U VoW, differ from u,v,w by XtY o120 respectively, where the

C C

latter are independent of the spatial variables, can be regarded

v
EL
as depending on the partial derivatives of U VW with respect to

2

X,¥,2. We assume that VEL is a function of azuc/ax ‘ azuc/axay, ——,

azwc/az2 but this assumption in no way affects the generality of the

I should be

regarded as mere scaffolding used in the construction of a general

formulation. This particular functional dependence of VE

theory, as the final formulation is expressed in a form which involves
the partial derivatives only implicitly.

The system differential equations can be obtained by means of
Hamilton's principle. To this end, a brief discussion of the gener-
alized coofdinates is in order. The motion of the mass center c
is generally assumed not to be affected by the motion relative to
c, so that it is possible to solve for thé motion of ¢ independently
of the motion relative to c. As a result, the motion of ¢, referred
to as orbital motion, can be regarded as known. We shall confine
ourselves to the case in which the first term on the right side of
Eqg. (5) reduces to a known constant, so that the term can be ignored.
This is clearly the case when the orbit is circular, or the motion
of ¢ is uniform or zero. It follows that the system generalized
coordinates are the three rotations ei(t) and the three elastic
displacements uc(x,y,z,t), vc(x,y,z,t), wc(x,y,z,t). The elastic
displacements are defined only throughout the domain Dr namely the
subdomain of D corresponding to the elastic continuum, where D is
a three-dimensional domain corresponding to the entire body. The

domain De is bounded by the surface S.



For the holonomic system at hand, Hamilton's principle has
the form

t
8 L dt =0 (7)

where the motion must be such that the end conditions

§6, = 86, = 88, = du_ = §v_ = 6wc =0 at t = tl,t2 (8)

1 2 3 c c

are satisfied. The integrand L in (7) is the Lagrangian which has
the general functional form

n . . Bzu Bzuc 32Wc
L(eile : rucrv T W

. C
= 7 r T ydb
EL SD i c c axz IXOY 322 (9)

in which i is the Lagrangian density.

An application of Hamilton's principle leads to the system
Lagrangian equations of motion. Details of the derivation are
given in Reference 3 and will not be repeated here. Instead we gquote
directly from Reference 3 the ordinary differential equations for the
angular displacements.

L _d_ oL, _

56+ 4t ; i=1,2,3 (10)

and the partial differential equations for the elastic displacements

3L 9 oL 2~
50~ 3E 3al) +xu [uc'vc’wc] tQy =0
c c c c

9L 3 AL "

22 - () + L, [uv o w ]+0Q, =0 (11)

avc st avc Ve c’'¢c’ ¢ Ve -

oL 3 3L "

S— e ('——:—') +I [u VW + 0 = ()

awc at ch v, c’ ¢ c] Y,
where Egs. (11) must be satisfied at every point of the domain De'
Moreover, Egs. (ll) are subject to the boundary conditions

gj [uc,vc,wc]- By [uc,vc,wc] =0 onS, 3j=1,2; k= 3,4 (12)



The differential operator vectors gXJ;C,aZVC,&fWC), §j(Bjuc,Bch,ijc),

and gk(Bku 1By ’Bkw ) are defined by the following integration by
parts ¢ ¢

o 2 R 2
ot 2%y, o 3%
[ 2 5T S—=) + 2 (Gxay) %

D 9 (3%u_/ex%) 9x 3 (3%u_/0xdy) ¥

5L azwc

8 ( )]dD=S Z[au v ,w ]-6u dp_ +

3 (3%w_/322) 322 D ™~ [9ervercl €

C e
gj [uc,vc,wc:l-gk [uc,vc,wc] r J=1,2; k= 3,4 (13)

} S
2 .2 2 2

We note that the partial derivatives Bzuc/Bx ; 0 uc/axay,———,a wc/az
enter into Egs. (11l) and (12) only implicitly through the differential
operator vectors %;, §j’ and gk, thus lending substance to a statement
made eérlief regérding the generality of the formulation. The guant-

ities Qu r Q, » Q, represent distributed internal damping forces which
c c c
depend on the elastic motion alone and not on the rotational motion.

It should be pointed out that the damping forces were added afterward,
as such forces cannot be treated by means of Hamilton's principle.

Introducing the generalized momenta

. oL . - TS
pe = '—.—'— r l = 1,2,3
i aei
s~ 8L ~ 3L 3L
Py T 3% r Py T 3% r Py T (14)
c c c c c c

where the latter three are momentum densities, it is shown in Reference
3 that the second~order Lagrangian equations, Egs. (10) and (11), can
be converted into twice the number of first-order Hamiltonian equations

having the form



1 ap6~ i 391
i
~ »~ ”~ \
° BH ° aH » aH
u = S— v, = w_ o= 25
c ap, ! ¢ 9b, ! c b,
c c c
2o pH r 5 -
puc aU +I’uc Luc'vc’wc] + QuC (15)
7 at every point of D,
1 - -
- .. 9 -
Py = 3V +‘xv [uc,vc,wc] +Q,
c c c c
2 aﬁ a
Py = oW +‘Iw [uc’vc'wc] 9y J
c c c
in which H is the Hamiltonian defined by
3
H = Z:-.pe.ei + g (pukuC + Py Ve + Py, wc) dDe - L (16)
i=1 i D c c c
e

and E is the corresponding Hamiltonian density. It should bhe noticed
here that the Hamiltonian has a hybrid form as it is a function and

a functional at the same time. The equations for the elastic motion
are subject to the same boundary conditions, Egs. (12). When the
kinetic energy is quadratic in the generalized velocities, the Hamil~-
tonian reduces to the form

H=T+ V. (17)
—

which is recognized as the system total energy.
Systems with Ignorable Coordinates

In the case of a system free of external.torques, such as the

case under consideration, one of the angular coordinates ei(i=l,2,3)

is absent from the Lagrangian. Then from Egs. (10) and the first half
of Egs. (14) it follows that the system possesses a first integral of
the motion in the form of the conjugate momentum. The expression of
the conserved momentum may be used to eliminate from the Lagrangian the
angular velocity associated with the absent angular coordinate, thus
reducing the number of degrees of freedom by one. The procedure for
accomplishing this is referred to as Routh's method for the ignoration

of coordinates (see Reference 1, Section 2.1l1).



Let-us assume that 64 is absent from the Lagrangian, so that
the conjugate momentum is conserved, Py = aL/aé3 = 83 = constant.
Since the potential energy does not depénd on velocities, from
Eq. (5) the momentum integral can be written as

. (18)
3 863 26 -

Equation (18) plays the role of a constraint equation, which can be

solved for é3 in terms of él and éz. Since the elements of the |

angular velocity matrix {é§ in Eg. (5) can no longer be consgidered

"independent but related by (18)[ we can define the linear transfor-

mation

33 ‘0 . 0

.l 1 A 1 C TeTiia

{6, 1=5—| o Iyp e 1+t 7—¢ 0 = [c]{é*] +{B} (19)

-L

o3 113 "Iz B3l

which takes Eg. (18) into account automatically. By contrast with
{éﬂ, the column matrix {é*ﬁ contains only two elements, which must
be regarded as independent. Introducing Eg. (19) into (5), and
disregarding the first term (assumed to be constant), we obtain
83L3

v = 3 (I v (2T ¢ 3 22 ) @il an
(20)
where
_ o, | -
T111337113 T121337113103

[1+]

i

[cI™[1][c] = +~
33

2
1121337113553 1521337103
- - (21)

T33B17 11303

———
-
*
!
1
@]
R -
=3
——
t
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IH

L,-I,,L

33 I33057 15303



We notice that the kinetic energy, Eg. (20), is entirely free of

63 and 63.

The elastic potential energy V is assumed to depend only on

EL
the elastic displacements UL VoW, and its general form will be

introduced later.

Stability of Motion of a Dynamical.System

Let us consider the dynamical system

X = X(x) (22)
For a discrete system X = x(t) represents a vector in a finite dim-
ensional vector space S. The motion of the system can be represented
as a path in that space. If Eq. (22) represents a set of canonical
equations, then the motion of the dynamical system can be regarded as
a succession of infinitésimal contact transformations possessing the
group-property. The properties characterizing the group are as
follows: 1) the identity transformation belongs to this class, 2)
two successive transformations are commutative and the result is also
a contact transformation, 3) two contact transformations satisfy the
associative law, and 4) the ihverse of a contact transformation is
also a contact transformation. Hence, the motion of the system may
be interpreted as a continuous mapping of the space S onto itself.
For canonical systems of equations half of the elements of x represent
generalized coordinates and the remaining half represent the conjugate
momenta. Moreover, the space S is simply the phase space.

A solution of Eq. (22) satisfying

X(x) =0 (23)
represents a singular point or an equilibrium position. We shall be
interested in the stability of the solutions in the neighborhood of
eQuilibrium positions. Without loss of generality, we can assume that
the equilibrium point coincides with the origin so that we shall be
concerned with the equilibrium of the trivial solution. Denoting the
integral curve at a given time ty > 0 by g(to) = Xo+ and assuming that
the origin is an isolated singularity, we can introduce the following

definitions due to Liapunov:

10



a. The null solution is stable in the sense of Liapunov if any

arbitrary positive e and time = there exists a 6(e,to) > 0

such that if the inequality

I xpll < 6 (24)
is satisfield, then the inequality
ffx(t)] < ¢ ' tpgs t < (25)

is implied. If § is independent.of ty the stability is said
to be uniform.

b. The null solution is asymptotically stable if it is Liapunov

stable and in addition
lim [ x(£)) = 0 (26)
t > oo

Similarly, if Eg. (26) holds, then a uniformly stable solution

is said to be uniformly asymptotically stable. For autonomous

systems stability is always uniform.
c. The null solution is said to be unstable if for any arbitrarily

small § and any time ts such that

I xolh < 6 (27)
we have at some other finite time tl the situation
hxEDN = e . ty >t (28)

To test the stability of the trivial solution, we shall use
Liapunov's direct method which is based on the differential equation
(22) but does not require the solution of this equation. To introduce
the concepts, we confine ourselves to autonomous systems and consider
a scalar function U(x) such that U(0) = 0. The total time derivative

of U along a trajectory of system (22) is defined by

ﬁ=%%=gu-g=gu~§ (29)
where VU is the gradient of the scalar function U. In the case of
a hybrid system U is both a function and a functional at the same
time, as the dependent variables corresponding to the distributed

portion of the system appear in U in integrated form.

11



Next we consider the following theorems:
Theorem I - If there exists for the system (22) a positive (nega-
tive) definite function U(x) whose total time derivative ﬁ(§) is
negative (positive) semidefinite along every trajectory of (21),
then the trivial solution x = 0 is stable.

Theorem II - If the conditions of Theorem I are gatisfied and if

in addition the set of points at which U(x) is zero contains no
nontrivial positive half~trajectory §(t), t 2;t0, then the trivial
solution is asymptotically stable.

Theorem III - If there exists for the system (22) a function U(x)

whose total time derivative ﬁ(g) is positive (negative) definite
along every trajectory of (21) and the function itself can assume
positive (negative) values in the neighborhood of the origin, then
the trivial solution is unstable.

Theorem IV - Suppose that a function U(x) such as in Theorem III

exists but for which ﬁ(g) is only positive (negative) semidefinite
and, in addition, the set of points at which U(x) is zero contains

no nontrivial positive half-trajectory x(t), t =z t Suppose further

0°
that in every neighborhood of the origin there is a point &(to) = X
0 > 0 we have U(§O) > 0(<0). Then the

trivial solution is unstable and the trajectories §(§0,t0,t) for

0
such that for arbitrary t

which U(x,) > 0(<0) must leave the open domain Ix{<e as the time t
increases. -~
A function U satisfying any of the preceding theorems is referred

to as a Liapunov function. Theorems I and III are due to Liapunov,

whereas, Theorems II and IV are due to Krasovskii. A more detailed

discussion of the theorems can be found in the text by L. Meirovitch
(see Reference 1, Section 6.7).

The Hamiltonian as a Liapunov Function

We shall show next that under certain circumstances the Hamil-
tonian can be used as a Liapunov function. Taking the total time
derivative of H from Eq. (16) and using Egs. (10) and (11), as well

as boundary conditions (12) and definitions (14), we obtain

H=S 0. 4 +0. v + 0. w.)dD (30)
ucc Vcc WCC e

12



Next we assume that the damping forces are such that H is negative

semidefinite

H<0 (31)

A ~

v ! QW are never iden-

tically zero at every point of the phasecspacg butcthey reduce to

Moreover, due to coupling, the forces Qu , Q

zero at an equilibrium point. Hence, if the Hamiltonian H is positive
definite at an equilibrium point, then by Theorem II, H can be re-
garded as a Liapunov function and the equilibrium point under consider-
ation as asymptotically stable. On the other hand, if H is not pos-
itive definite and there are points for which it is negative, then

by Theorem IV the equilibrium point is unstable.

_ In view of the preceding discussion, we shall consider the Ham-
iltonian as a Liapunov function. As indicated by Eg. (23), the equi-
librium positions are those rendering the right sides of Egs. (15)
equal to zero. Hence, the equilibrium positions are the solutions

of the equations

oH oH . :
ap = 0 ’ -— ——-—ae. = 0 ’ 1 = 112’3
ei 1
R _ sl _aR _, |
op 3P b
Yo Ve Ve (32)
oH ' : -
T 3u +'ih [ugrvgrw ] =0 o .
c c : at every point of De
SH _
3?; +wfvc [uc,vc,wc] = 0
T _
e + LW [uc,vc,wc] 0 |

To test the positive definiteness of the Hamiltonian, we use
Sylvester's criterion (see Reference 1, Sec. 6.7). To this end, we
represent the elastic motion by appropriate modes of vibration, derive
the quadratic form associated with the Hamiltonian in the neighborhood
of the equilibrium and investigate the sign properties of the Hessian
‘matrix, namely, the matrix of the coefficients of the quadratic form.

13



The Stability of High-Spin Motion of a Satellite with Flexible

Appendages.

The general theory developed in the preceding sections will
now be used to investigate the stability of a satellite simulated by
a main rigid body and six flexible thin rods, as shown in Figure 2a.
In the undeformed state the body possesses principal moments of inertia
A,B,C about axes X,y,z, respectively, and the rods are aligned with
these axes. The body is initially spinning undeformed about axis z
with angular velocity Q- The domain of the elastic continuum D,

consist of three subdomains:

DX s - (h.x+zx) < X < - hX‘,hx < X < (hx+zx) ' SX = j—_hx, + (hx+zx)

.D_ ¢ = (h _+2 < < - h h < < (h +2& S =+ h + (h +2%
y (hy*ty) <y y rBy <Y < (gHo) o, 8y =% by, (hotto)
D, : - (h,+2 ) <z <~-h, ,h <z < (h+e) , 5 ==+h, + (h +)

Hence r = xi + yJj + 2k over D—De, r = xi over Dor L = yj overx Dy’ and
r = zk over D,. Assuming only flexural transverse vibrations, it
follows that

u=u = i + w_k u = u =v__J 4+ w r = i + 2z
- X Vyd x= ! ¢ ~ex ox3d. cx]«i =Y Yol c}-i-over Dx
u=u =ui+wk,u=u =u i+w_k ,r =x1i+ 2k over D
. m-y yaw- R ym ~C ““‘CY cy:». cy... -~ Cm Cm~

= = i + j = =u_ i+ v__j r =x i+ y.j
- Bz Uzt Vzd 1 EoT Hez cz= czd ! X¢ Xen Y] over Dz

From Egs. (2) we conclude that the moments and products of inertia
of the deformed body have the values
2

_ 2, 2 2 -
Jgg = A + fD px(vcx+wcx)dx + jD pywcy dy + fD P,Vey dz
X y z
J =B+ | wo dx + | (u2 + WP ) dy + [ o w?  agz
nn D Px"ex D Pyt ey cy p (% oz
X y Z
J_=C+ | vei dx + | u? dy + | (u2 +v2 )dz
Le b Px"cx D Py ey D Pz'"cz" "cz
x y z
(33)
Tpg =T, = jD P XV, dx + ID P YUy dy + ID PV, 42
X y z

14



J = J = XwW dx + u_w
T 1 '{D Px™Tex ID Py ey cy

dy + | p, 20, 4z
X y Dy

cz

Jn; = J;n = ID PxVex"ex vyt ey cz

V. W 8x + [ o yw dy + | P 2V, 4z
b Dy D,

where Pyrp,rp, Tepresent mass per unit length associated with the

Yy
respective rods. Moreover, the elements of the matrix {K} in Eq. (3)

have the form

Kp = ID Px Vex¥ex = VexVWox)9* * f Py

ywcy dy - fD p 42V dz
X y z

(054

W, dx + ID py(wcyucy - cy cy)dy + j p,Zu,, dz (34)
X y Py

=
]
I
b
©

KC-= f Px*Vex dx - jD pyyucy dy + JD pz(uc.zvcz - u‘czvcz)dz
X vy z

whereas the last term in Eg. (3) becomes

_ 1 . 2 e 2 . 2 . 2
f (u + v + w )dm =5 JD Py (Vi + Wg,)dx + ID py(ucy + wcy)dy
X Yy
+f e @2+ 32 )az (35)
D

We shall assume that the mass of the rods is symmetrically distributed,
namely that p(-x) = p(x), p(-y) = p(y), and p(-2) = p(2).

If the rotations are as shown in Figure 2b, it is not difficult
to show that

[ e T
cos 62 0 sin 62 cos el

[6] = 0 1 sin Y (36)
sin 92 0 cos el cos 92

from which it caﬁ be concluded that 04 is ignorable, and the kinetic
energy has the form (20). To write the kinetic energy explicitly, we
need the matrices [I] and {L}, which, according to Egs. (6), have the

elements

15



2 2
J - 2 562062 J + 876, J

11 %2 Vg £ 2 "zt

T22 = Jan
133 = czelszengg + szelJrm + czelczezJCc + 2selqelsezJgn

+ 2026 s6,co.,J,__~ 280.c0,CH,J

1772725 ¢ 1771772 ng
Ijp = Ty = =(coyd, + 88, T ) ) (37)
I13 = 131 = celsezcez(JCC - Jgg) - Selcengn - cel(czez-szez)JEC
- selseanc
123 = 132 = celsengn + selJnn - celceanC
and

Ll = ce2 Kg 4+ 562 KC
L, = Kn (38)
L3 = - sezcel KE + sel Kn + celce2 KC

where se; = sin 6, , cob, = cos ei (1=1,2).

We shall be interested in investigating-the stability of the
high-~spin motion in which the undeformed satellite rotates with the
constant angular velocity 2 about axis z. Hence, we consider the
stability in the neighborhood of the equilibrium point

= g = 1u = 1 = v = v = W = W = 0

®1 2 cy cz cx cz cx cy

(39)
é=é=. = =‘ = v ='(;7 = w = (0

1 2 cy cz cx cz cx cy

Denoting this equilibrium point by the subscript E, disregarding con-
stant terms and terms of order higher than two, we use Egs. (17) and
(20), in conjunction with Egs. (21), (33), (34), (35), (37), and (38),
and obtain the Hamiltonian in the neighborhood of E in the form
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_ 1 o D + ® B ?
HE = 7{‘Ael + B62 + 261( SD pyywcy V4 SD p zvczdz)
Y z
o ° B3 2 2
+ 262( SD p zuczdz - gD P W oo dx) + (—=) [(C-—B)el
Z X
9 A
+ (C-A)e2 + 261( SD pyywCy dy + SDD Zv_, dz)
Yy A
- 28 (S p_XW dx + S p _zZu dz) - S v2 dx
2 cX cz PxVex
D D D
X z X
2 2 2 1 .
- SD pyucy dy §D pz(ucz + vcz)dz] E( SDprvcxdx
Yy z X
_ . n2 12 S .2 .2
SD pyyucy dy)© + SD px(VCX + wcx)dx + 5 py(ucy + wcy)dy
Y X Y
+ g o (0% + v2 yazl+ v (40)
p 2 cz “cz EL
z N -
where we recall that
Yoy = Uy T o 1t Vog TV, T ¥ 1 Wog T Wy T 24
(41)
Yoy T U T o 1 Vox T Vx T Yo 1 Wy TV T Z4
in which
_1 1(
X, = ﬁs pyuydy + = U, dz
D D
y Z
1 1
Yo = HS vaxdx + ﬁg PV, dz (42)
D D :
_1 x o+ L
e T HgD P W dx + o b P Yy dy
X Y
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Assuming that the elastic potential energy is due entirely to

flexure, we can write

azv 2 32w 2
X

_ 1 X X
Vg = -2-{ S [er, —% +E1, (—3 Jax
Dx X 9 X X

2

37u,. 2
—
* SDJ:EIuy ( ayz’

azw 2
+ EI.  (—1) ]dy
W.. 2
y £

azu 2 32
z

Zy + EI

vZ 2
2 zz) ]dz } (43)

+ SDZ[Equ (

Equation (43) can be written in a more convenient form. To this end,

(
5 A

we recall that the boundary conditions for the clamped-free rod corres-

ponding to the domain hx < X < (hx + 2x) are

avx(x,t)
VX(X,t) = T = Q at X = hX 7
2 2 (44)
pov (x,t) - 3 vx(x,t)
EI — = & [EI ———————-—-}= 0 at x = h_ + 2
Vi %2 X Vx 5 x2 , X x

Similar boundary conditions can be written for the remaining rods.
In view of this, expression (43) can be integrated by parts with the

result 2 g 2

2 3"V 27w
_ 1 a__ X : 9 X
VEL T 75 S [ vx =7 (&I, 7) +t v, — (BEL, 7) ] dx
DX 29X X 3X P4 X ;4
2 2.
. 2 s u 2 ? W
+ S [uy & @I, —I + v, & (er, 3 ]dy
Dy oy Y oY oy y 9y
S 52 32uz 52 azvz
+ ) [u, &5 y + v, 2 (eI y ] az } (45)
D, Z 552 U, 522 Z 5% Ve 3z2

The complete expression of the Hamiltonian in the neighborhood of the
equilibrium position E is obtained by inserting expression (45) into
(40).

18



Examining the Hamiltonian, Eg. (40), and the companion equa-
tions (41), it is obvious that the elastic displacements are not

independent of one another. Although it may be possible to apply
the theory of Reference 3, perhaps by devising a testing function

K which is known to be smaller than H and in which the elastic dis-
placements are independent, we shall consider instead a stability
analysis by modal analysis. To this end, we represent the elastic

displacements by the following series

o, . e, )
Ve T i ¢xoi(x)vxoi(t) + 25' ¢xei(x)vxei(t)
over D (46a)
o, e, bl
Vg T Eil 1pxo:.(x)W ( )+ g;i 1”xe:L(x)W ei (t)
. z?y ( t) 'ze;y (y)U_ . ()
= . . \ + .
uy in ¢y01 Y)Uy01( i1 ¢yel Y yeil
over D (46Db)
oy ey y
wy = Egi yel(y)w oi(t) + fzi wyei(y)wyei(t)
o, e,
u, = 2: ¢ZOl(z)U i(t) + 2;_ ¢zei(z)Uzei(t)
i=1 i=1
o, e, - - over Dz (46c)
v, = :El Vpoi (B) Vyop (B) + l}__l Vei (2) Vg (B)
where o_, e, Oyr €y o,. e, are constant integers, ¢, :s ¢ 57

Vo :s ===, V. . are eigenfunctions associated with the elastic
xoi zel

rods, and oni’ Vxel’ W -, VZei

cdordinates, in which the letters o and e designate odd and even modes

¢

are corresponding generalized

Y sy TTT g

of deformation, respectively. The functions ¢ <oi

xoi! "xei’

v, . satisfy the relations
xei
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¢xoi(x) =7 ¢xoi(_x) = ¢xei(x) = ¢xei(_x)
(47a)

wxoi(x) =T wxoi(-x) = wxei(x) = wxei(_x)

boor (¥) = = by () = o V) = by, ()
) (47b)

111y01(Y) = - wycn(_Y) = lpyei (Y) = IPyei(“Y)

¢zbi(z) - ¢zoi(-z) = ¢zei(z) - q)zei(_z)
(47¢)

Vooi (2) = = V0 (52) = v, (2) =y, (-2)

The eigenfunctions s oi constitute the solution of the eigenvalue pro-
"blem defined by the differential equations

_ 2

a2 4 9501 2
o2 Blyx =2 ) =4
dx” dx

which must be satisfied over the domain hx < X < hx + Syt where

vxiPxbxo0i ¢ 1 = li2,--- (48)

by op 2rE subject to the boundary conditions
Ao, A |
= X0 =
¢Xoi(hx)-_ dx L 0
X=
x ~.
, e (49)
: 2
BT E_EEEE =9 (g1 d ¢X°i) =0
VE 4.2 dx VK 4.2 -
x=h +8 : x=hx+£X

The quantitiestvxi are the associated natural frequencies of vibra-
tion. If the rod coinciding with the positive x axis is nonuniform,
the solution of the eigenvalue problem can be obtained by one of the
approximate methods described in Reference 5. If the rod is uniform,
the solution can be taken directly from Reference 5 (Section 5-10).

Similar eigenvalue problems can be defined for Vo4 ! ¢y0i' iV PN
In the sequel we shall regard all the eigenfunctions and associated

eigenvalues as known.
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The eigenfunctions possess the orthogonality property. Moreover,

they can be normalized, so that

I Pxtxos ) byoy (6) ax = 254
X
| o by (x)o, . (%) dx = 26, . i, =1,2, --- (50)
p x'xei xej ig
X
fD Pxbxoi (¥) dyey (¥) dx = 0
X

where Gij‘is the Kronecker delta. Similar expressions can be written
for the remaining eigenfunctions.

In view of the above, a typical term in expression (45) becomes

2 o e

[ v, ii~ (EX i VX) dx = | ( ~ 6. . V_ . + i b . V. )
Dx X aX2 VX axz Dx {Z3 'xoi 'xoi {Z3 "xel 'xei
x[g%c d2 dz X0j ° d2 d2¢xe3
o) oni.dxz (EI dsxc? ) + fgi Veei 5“7 (Elvx dx2"{]dx
= 2({;x LR = TR (51)
i vxi X0i i vxi xXei

_ .
Hence, the potential enexrgy V can be regarded as a function of the

EL
generalized coordinates.

From Egs. (41) we conclude that the Hamiltonian depends on the
displacements X1 ¥qr and Z. of the center of mass, which, in turn,
depend on the elastic displacements according to Egs. (42). Substi-
tuting Egs. (46) into (42), we conclude that the displacements Xo1¥
Z depend on the generalized coordinates Uyoi'Uyei'Uzoi’Uzei’oni' —_——
It follows that the Hamiltonian, Egq. (40), depends on the coordinates
el’ez’Uyoi’Uyei’Uzoi’ -=-=- as well as their time derivatives. Hence,

He is a quadratic form in 4(l+ox+ex+oy+—~—+ez) variables. For stabil-

ity, H, must be positive definite in these variables.
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Exarmining expression (40), we conclude that Hy can be written
as the sum of a quadratic form depending on the velocities alone and

another quadratic form depending on the coordinates alone
(52)

Furthermore by using even and odd modes to represent the elastic
displacements no coupling between the even and odd modes occurs.

Hence, each of the testing functions Hl and H may be represented

E 2E
as the sum of two quadratic forms, one involving only even modes and

one involving odd modes and the rigid body motion only

H + H

jas
i

1E lEe 1lEo .
(53)
HZE = HZEe + HZEO
where
e. e
X X . ]
Hipe © o1 4 (sij - Zvaivaj) xeivxej
e, e, . .
* s ) (Sij - ZIvziIvzj) zeivzgj‘
°x %z . .
-4 Fy) jzi ToxitvziVxeiVzes
e. e
X x L L]

+ (6.. - 21__.T _.) W,
S T & wxi‘wxj’ xei xej
e. e .

. Ej? (8 21 I .) W__.W
+ C - . . . .
ggi Fc IS wyi wyj’ "yei'yej

°x Oy o
-4 i1 ;Ei wainijxeiWyej
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e, e
Y Y
+ i=l'j=l(5ij_21uyiluyj)uye1 yej g;- }gi(6ij—21uzi1uzj)ﬁzeinzej
e
y Z » L3
-4 fgi ééi TayituziYyeiVzes (54a)
and
°
_ 1l :2 . 2 . y . z .
Higo = 7’{Ael + Bo, 461(25' Jwinyoi — Jvzivzoi)
i=1 i=1
o, o, .
Z: JuzilVz0i ~ Z; TorxiVxoi!
i=1 i=1
o o
X _x . .
+ 2 0 ia (6ij - Zvaivaj)vxoi %03
._.J C
o o
+2yy62J)t'Jt38ox£yJJ\'it‘J
. =2J . . . = . . . .
F j=l( i3  “TuyiTuyj’ “yoi“yoj ' C [ 401 vxiTuyjxoiyo]
C .
°2 °z °x Oy
. 2 s 2 .2 o2
+2(0 Ve .+ ) US4+ Wo .o+ w.)} (54b)
fo 7ol T fz Tzoi T {m Txol T {3 Tyod
/\‘
where
h o+ h+8 |
Joxi = S pxx¢xoi(x)dx v Juxi T S pxX‘pxoi(x)dX
hx hx
(2m—mx—mz)l/2 h +2
vai = m pxq’xel(x)dx (55)
h
X
(2m—mx-my)l/2 h +2
wai = m px"’xel(x)dx
h
X

23



in which m, = 2pX£X, my = 2py£y,-and m, = 2pzzz. Similar ex-

pressions can be written for Jvzi'Juyi’-—_ and Iyzi’Iuyi’-~-'

Moreover, the conserved momentum has the value B3= QSC corres-
ponding to the equilibrium position of pure spin about the z axis
in the undeformed state. Using again the normal mode expansions

for the elastic displacements, we obtain for H2Ee and H2Eo

X2 2
H = é:i [(AVXJ_Q )8y j+298 vaivaji]VxeiVxej

2 2 2
[?szj—gs)éij+zgs IvziIvzj:]Vzeivzej

e
X

2eX
+ 407 . I

V. .V
i 3= vxi VZ] xel zej

' 2 2
+ AS . -Q + 201 .I_.1lu .U .
in io1 [( uyj - ) ij s “uyiTuyj ] yel yej

1

z "z 2 5
* o [(Auzi_ﬂs)sij * 205 Tyzituzy (Yzeilzes

e e
e 2 )

+4Q§Z_ZI.I U .U .+ pZ

i=1 =1 uyiuzj yei zej

e
Y o 2

+ E;H-Awyiwyei (56a)

. (o]
1.2 2 v a2 b
Hy,o = 5 92 [(C-B)ed + (c-a)e + 4el(i=l Ty iy o1

() 0

o,
+ 2; IyziVzoil ™ 4° (Ezi JuzilVzoi * g;i wa1 x01)]
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9x' Oz
z: 2 2, ..2 2 2.2
to. (hoxi ~ I Vio0; * (hG i szs)vzoi
i=1 1
o o
Y 2 2,..2 Z 9 2.2
+ (A - 9)u + (A - Q9yu® |,
o wyid s’ “yoi iZy Tuzi s’ “zoi
OX Oy
2 2 2 2
+ A L WO L+ A LW, (56b)
oy Twxi Txoi oy wyi Tyoi

As indicated previously, the time derivative of the Hamiltonian
is negative semidefinite. Hence, due to coupling, if the Hamiltonian
is positive definite the equilibrium is asymptotically stable, and if
the Hamiltonian can take negative values in the neighborhood of the
origin the equilibrium is unstable. But by Eg.'s(52) and (53) the

_ 1Ee, HlEo’ H2Ee and H
so that for H to be positive definite it is necessary that H

Hamiltonian can be written in four parts, H 2EG!
lEe’ HlEo’

H . ==-, can be

~-- all be positive definite. Expressions for H 1Eo!

‘ 1Ee’
written in the general form

o

n n n
a

e _e
q H =

X o lEo

J:

no !
>

j=1

N

eij 9ei 9ej’ oij %oi %oj

N} 1=

1ke

1l

| ad
ot
et
!_.l

(57)

n n n

e e e (o}

L] L] l

LD Bogs Gu; Qs Hopo = 5 2 2
i1 =1 elj “ei “ej 2E0 2 iz1 491

=]

4
\

H = . °

2Ee B

Toij 9oi qoj

N =

J

e
i

where ey and d,4 are generalized coordinates and e and q,; are
eiy’ aoij’ Beij and Boij represent
constant coefficients. According to Sylvester's criterion (see

Hypor Hope and Hy

generalized velocities. The o

Reference 1, Sec. 6.7), are positive

H1Ee, Eo

definite if conditions

‘aeij‘> 0 i lB
i,3 = 1,2,---k;k =1,2,---,n (58)

Iu'oj_j ‘
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are satisfied, which represents the conditions that all the principal
minor determinates associated with the matrices [“e]’ [QO], [ge] and

[8,] of the coefficients be positive. The matrices [qe], [“o]’ [Be]

and [BO] are referred to as Hessian matrices.

Numerical Results

The general solution of the problem of a rigid satellite with three
pairs of uniform rods has been programed for digital computation. A
numerical solution has been obtained on an IBM 360 computer. Results
are presented for the case in which the rods in the radial direction
are of equal length and the satellite possesses equal moments of
inertia in the x and y directions. Moreover, all rods have equal
mass and stiffness properties. Figure 3 shows the spin ratio Qs/Amin
necessary for maintaining stability as a function of the length of

the radial rods for fixed values of system parameters, where j re-

presents the lowest natural frequency associated with the vibrzt?on of
the radial or axial rods. If the parameters of the system can be
represented by a point in the regidn below the appropriate curve, then
the equilibrium is stable. These curves show that the allowable spin
ratio Qs/Amin must be lower than unity. The extent to which it must

be lower than unity depends on the system parameters. In particular,
when the relationship between the rod lengths and the system parameters
is such that C approaches A the allowable spin tends to zero. Figure

4 compares the results of a two-mode approximation for the elastic dis-
placements to those using a four-mode approximation. We observe that

the region of stability corresponding to the four-mode approximation

is slightlyvsmaller than that corresponding to the two-mode approximation,
which conforms with expectation. Figure 5 shéws the effect of increasing
‘the mass of the rods. As in Figure 3, the area below the appropriate
curve represents stable equilibrium. The curves indicate that an
increase in mass decreases the region of stability. Figure 6 shows the

parameter plane Qé/A versus CO/AO divided into regions of stability

min
and instability by the curves RAz = constant. The symbols are defined

in the Figure. Stability is possible if the parameters are such that the
system is represented by a point below the appropriate RAz curve.

Again the ratio QS/A depends on the system parameters and is not

min
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to be merely smaller than unity. For comparison purposes, a problem
which can be regarded as a special case of the present one, in the
sense that it considers only spin axis rods, has been considered;
this is the problem investigated in Reference 4. Results for the
four-mode approximation and those of Reference 4 are presented in
Figure 7 and, as expécted, they indicate that the criteria obtained
in Reference 4 working directly with the hybrid system of equations

are more stringent than those obtained here by means of modal analysis.

Summary and Recommendation for Future Studies

The mathematical formulation associated with the problem of the
stability of motion of a satellite consisting of a main rigid body
and three pairs of flexible booms has been completed. The booms are
capable of bending in two orthogonal directions. Whereas the rota-
tional motion of the body is described by generalized coordinates
depending on time alone, the elastic displacements of the booms depend
onlspatial position and time. Because of the flexibility of the booms,
the center of mass of the body is continuously shifting relative to
the main rigid body. These displacements, however, do not add degrees
of freedom since they can be expressed in terms of integrals involving
the elastic displacements. The formulation is appreciably more com-
plete than that of Reference 2. Assuming no external torques, one
of the coordinates describing the rotational motion is ignorable.

The Liapunov second method has been chosen for the stability
‘analysis because it is likely to yield results which can be interpreted
more readily than those obtained by a purely numerical integration
of the equations of motion. Due to coupling of the elastic displace-
ments, it is not feasible to use the stability method developed by the
principal investigator (see References 3 and 4). Instead, modal analysis
is used to reduce the system from a hybrid to an entirely discrete one.
Since the elastic vibration results in energy dissipation, according
to the Liapunov second method, the equilibrium position is asymptot-
ically stable if the Hamiltonian is positive definite and unstable if
it can take negative values in the neighborhood of the equilibrium.

The equilibrium position investigated corresponds to the high=spin

‘motion of the undeformed satellite about one of the principal axes,
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namely, the z axis. The ccnstant angular velocity in that position
'is denoted by 2. The stability of the equilibrium is investigated
by means of a computer program based on Sylvester's criterion.

The formulation is gquite general, in the sense that booms of
arbitrary flexural stiffness and mass distribution are considered. For
a numerical solution the booms are assumed uniform. Although the results
presented are numerical in nature, there appears that a possibility
exists for deriving closed-form criteria in terms of infinite series
associated with the natural modes of the elastic booms. This possibility
is presently being explored.

The fact that the booms are assumed to undergo bending places a
limitation on the length of the booms vis-a-vis the flexural stiffness.
If booms of relatively large length are to be considered, then the
behding theory cannot be regarded as valid any longer. Whereas the
length limitation on the axial booms remains, the radial booms of
greater length may be regarded as strings in tension, where the tension
is provided by the centrifugal forces.
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Figure | — The Flexible Body in an Inertial Space
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